

MAPLD 2008

E

Actel

POWER MATTERS

RTProASIC3 Qualification Plans

ACTEL Corporation 2061 Stierlin Ct. Mountain View CA 94043

(Author: Marco Cheung)

Presentation Outline

- RTProASIC3 Highlights
- Flash Switch Architecture and Operation
- Production Test Methodology
- Qualification Plans
- Conclusion

RTProASIC3 HIGHLIGHTS

- 130nm Flash based LVCMOS process
- Firm Error (FER) Immune

RTProASIC3 HIGHLIGHTS

Features Summary

RT ProASIC3 Devices	RT3PE600L	RT3PE3000L	
ARM Cortex-M1 Devices		M1RT3PE3000L	
System Gates	600 k	3 M	
VersaTiles (D-flip-flops)	13,824	75,264	
RAM kbits (1,024 bits)	108	504	
4,608-Bit Blocks	24	112	
FlashROM Bits	1 k	1 k	
Secure (AES) ISP	Yes	Yes	
Integratred PLL in CCCs	6	6	
VersaNet Globals	18	18	
I/O Banks	8	8	
Maximum User I/Os	270	620	
Package Pins	CG/LG484	CG/LG484, CG/LG896	

Flash Switch Architecture

The Flash switch (Non-Volatile Memory cell) is a floating gate transistor
V_{cc}

The RTProASIC3 Flash cell is composed of 2 transistors sharing a common floating and control gate

Used for logic head configuration and routing tracks connection/isolation

Program & Erase Operation

PROGRAM

CG FG OV OV Switch CG -ve coupling -ve coupling -ve Sense

ERASE

After uncoupling V_{FG} is +ve (switch is *ON*)

Internal charge pumps provide the high positive/negative voltages required

Production Test Methodology

Per MIL-STD-883E Production Flow

Burn-In Electrical Test

- High utilization Burn-In test design used in both production flow and qualification (Group C test)
- Coverage of test
 - Electronic serialization based on Lot/Wafer/Die X,Y information
 - Standby I_{dd} on individual power domain
 - Full DC parametric testing for all configurations on all bonded I/Os
 - Functional test for Burn-in design
 - PLL functional test
 - Delay Line Test (speed performance)

Burn-In Design Overview (1 of 3)

Clock Source

- External clock is fed into the PLLs of the device
- PLLs deliver the clock signals through global (low skew) networks

USER FlashROM (UFROM)

- Pre-determined Combo Block output pattern is stored into the UFROM
- Content is compared during burn-in

Burn-In Design Overview (2 of 3)

Embedded SRAM Blocks

- Full test coverage on all SRAM cells
- Dual Port / Two Port / FIFO configurations
- Varying depth and width configurations

Burn-In Design Overview (3 of 3)

Shift Register Block

- Scalable block for maximizing core utilization
- Controlled simultaneous switch rate (SSR)

Pattern Generator

IO Block

- Scalable block for maximizing I/O utilization
- Utilizes all possible I/O configurations
- Controlled simultaneous switching outputs (SSO)

Oscillator Block

• Free running oscillator to monitor silicon performance

Qualification Device: RT3PE3000L-CG896

Stress Test	Reference	Test Condition	No. of Qual Lots	# Failures / Sample Size	Test Duration / Pull Point
Group A	MIL-STD-883	T _A = - 55°C / 25°C / 125°C	1	0/116	Electrical test points
Group C* (HTOL)	MIL-STD-883 (TM1005)	$T_A = 125^{\circ}C$ $V_{CC} / V_{CC_{PLL}} = 1.6V$ $V_{CCI} / V_{PP} / V_{JTAG} = 3.6V$	1	1/77	168 hrs 500 hrs 1000 hrs
ESD	MIL-STD-883 (TM3015)	НВМ	1	0/3	Target >= 2000V
Latchup	JEDEC 78	T _A = 125°C	1	0/3	> 200 mA
Capacitance Test	MIL-STD-883 (TM3012)	T _A = 25°C	1	0/3	< 8pF
Characterization		$T_A = -55^{\circ}C$ to $125^{\circ}C$ Bias = min to max operating condition	1	5	

*Note: As part of the ongoing reliability process, HTOL will continue up to 6000 hrs

Group C Tests

Pre Group C

- Endurance test 550 program/erase cycles
- Margining complete characterization of flash cells

Group C

• 1000 cumulative hours of HTOL (T_A = 125°C)

Post Group C

- Full electrical / functional test
- Margining monitor any Vt shift (charge leakage) in flash cells

First re-programmable RT Flash based FPGA

- Full compliance to MIL-STD-883B
- Qualification completion targeted in Q1'09

Acknowledgement

Thank you to the following people who helped made this presentation possible

Paul Piroli Salim Samiee Solomon Wolday Minal Sawant

And everyone else who were involved in coming up with the Burn-in design methodology